Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hybrid populations selectively filter gene introgression between species.

Identifieur interne : 004692 ( Main/Exploration ); précédent : 004691; suivant : 004693

Hybrid populations selectively filter gene introgression between species.

Auteurs : G D Martinsen [États-Unis] ; T G Whitham ; R J Turek ; P. Keim

Source :

RBID : pubmed:11525457

Descripteurs français

English descriptors

Abstract

Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii x P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species' range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively "filter" gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.

DOI: 10.1111/j.0014-3820.2001.tb00655.x
PubMed: 11525457


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hybrid populations selectively filter gene introgression between species.</title>
<author>
<name sortKey="Martinsen, G D" sort="Martinsen, G D" uniqKey="Martinsen G" first="G D" last="Martinsen">G D Martinsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences and The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff 86011, USA. gregory.martinsen@nau.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences and The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff 86011</wicri:regionArea>
<wicri:noRegion>Flagstaff 86011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</author>
<author>
<name sortKey="Turek, R J" sort="Turek, R J" uniqKey="Turek R" first="R J" last="Turek">R J Turek</name>
</author>
<author>
<name sortKey="Keim, P" sort="Keim, P" uniqKey="Keim P" first="P" last="Keim">P. Keim</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11525457</idno>
<idno type="pmid">11525457</idno>
<idno type="doi">10.1111/j.0014-3820.2001.tb00655.x</idno>
<idno type="wicri:Area/Main/Corpus">004741</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004741</idno>
<idno type="wicri:Area/Main/Curation">004741</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004741</idno>
<idno type="wicri:Area/Main/Exploration">004741</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hybrid populations selectively filter gene introgression between species.</title>
<author>
<name sortKey="Martinsen, G D" sort="Martinsen, G D" uniqKey="Martinsen G" first="G D" last="Martinsen">G D Martinsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences and The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff 86011, USA. gregory.martinsen@nau.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences and The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff 86011</wicri:regionArea>
<wicri:noRegion>Flagstaff 86011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</author>
<author>
<name sortKey="Turek, R J" sort="Turek, R J" uniqKey="Turek R" first="R J" last="Turek">R J Turek</name>
</author>
<author>
<name sortKey="Keim, P" sort="Keim, P" uniqKey="Keim P" first="P" last="Keim">P. Keim</name>
</author>
</analytic>
<series>
<title level="j">Evolution; international journal of organic evolution</title>
<idno type="ISSN">0014-3820</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Evolution (MeSH)</term>
<term>Cell Nucleus (genetics)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Cytoplasm (genetics)</term>
<term>DNA, Chloroplast (genetics)</term>
<term>DNA, Mitochondrial (genetics)</term>
<term>Gene Transfer, Horizontal (MeSH)</term>
<term>Genetic Markers (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Geography (MeSH)</term>
<term>Hybridization, Genetic (genetics)</term>
<term>Magnoliopsida (cytology)</term>
<term>Magnoliopsida (genetics)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>Recombination, Genetic (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des chloroplastes (génétique)</term>
<term>ADN mitochondrial (génétique)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Cytoplasme (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Géographie (MeSH)</term>
<term>Hybridation génétique (génétique)</term>
<term>Magnoliopsida (cytologie)</term>
<term>Magnoliopsida (génétique)</term>
<term>Marqueurs génétiques (génétique)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Polymorphisme de restriction (MeSH)</term>
<term>Recombinaison génétique (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Transfert horizontal de gène (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Chloroplast</term>
<term>DNA, Mitochondrial</term>
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Hybridization, Genetic</term>
<term>Magnoliopsida</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des chloroplastes</term>
<term>ADN mitochondrial</term>
<term>Cytoplasme</term>
<term>Hybridation génétique</term>
<term>Magnoliopsida</term>
<term>Marqueurs génétiques</term>
<term>Noyau de la cellule</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Evolution</term>
<term>Crosses, Genetic</term>
<term>Gene Transfer, Horizontal</term>
<term>Genome, Plant</term>
<term>Geography</term>
<term>Polymorphism, Restriction Fragment Length</term>
<term>Recombination, Genetic</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Croisements génétiques</term>
<term>Génome végétal</term>
<term>Géographie</term>
<term>Polymorphisme de restriction</term>
<term>Recombinaison génétique</term>
<term>Spécificité d'espèce</term>
<term>Transfert horizontal de gène</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii x P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species' range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively "filter" gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11525457</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>08</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0014-3820</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>55</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2001</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Evolution; international journal of organic evolution</Title>
<ISOAbbreviation>Evolution</ISOAbbreviation>
</Journal>
<ArticleTitle>Hybrid populations selectively filter gene introgression between species.</ArticleTitle>
<Pagination>
<MedlinePgn>1325-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii x P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species' range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively "filter" gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martinsen</LastName>
<ForeName>G D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences and The Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff 86011, USA. gregory.martinsen@nau.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whitham</LastName>
<ForeName>T G</ForeName>
<Initials>TG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Turek</LastName>
<ForeName>R J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keim</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Evolution</MedlineTA>
<NlmUniqueID>0373224</NlmUniqueID>
<ISSNLinking>0014-3820</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018742">DNA, Chloroplast</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004272">DNA, Mitochondrial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018742" MajorTopicYN="N">DNA, Chloroplast</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004272" MajorTopicYN="N">DNA, Mitochondrial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="Y">Gene Transfer, Horizontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005843" MajorTopicYN="N">Geography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11525457</ArticleId>
<ArticleId IdType="doi">10.1111/j.0014-3820.2001.tb00655.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Keim, P" sort="Keim, P" uniqKey="Keim P" first="P" last="Keim">P. Keim</name>
<name sortKey="Turek, R J" sort="Turek, R J" uniqKey="Turek R" first="R J" last="Turek">R J Turek</name>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Martinsen, G D" sort="Martinsen, G D" uniqKey="Martinsen G" first="G D" last="Martinsen">G D Martinsen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004692 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004692 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11525457
   |texte=   Hybrid populations selectively filter gene introgression between species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11525457" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020